Documentation

Introduction to Accelerate AI

Welcome to Accelerate AI - the first platform to bring true AI processing to the Solana blockchain. Execute machine learning models, deploy intelligent smart contracts, and build autonomous agents with sub-second finality.

🚀 Why Accelerate AI?

  • Blazing Fast: Leverage Solana's 65,000+ TPS for real-time AI inference
  • Verifiable: Every prediction is cryptographically proven on-chain
  • Decentralized: No centralized AI servers - everything runs on Solana
  • Cost-Effective: Ultra-low gas fees make AI accessible to everyone

What You Can Build

🤖 AI Smart Contracts

Deploy intelligent contracts that make autonomous decisions using machine learning models.

📊 Predictive DeFi

Build DeFi protocols with AI-powered risk assessment and price prediction.

🎨 Dynamic NFTs

Create NFTs that evolve based on AI analysis of on-chain data and user behavior.

🔮 Autonomous Agents

Deploy self-governing agents that execute strategies using AI inference.

Quick Start

Get up and running with Accelerate AI in under 5 minutes.

Step 1: Install the SDK

npm install @accelerate-ai/sdk @solana/web3.js

Step 2: Initialize the Client

import { AccelerateAI } from '@accelerate-ai/sdk';
import { Connection, Keypair } from '@solana/web3.js';

// Connect to Solana
const connection = new Connection('https://api.mainnet-beta.solana.com');
const wallet = Keypair.generate();

// Initialize Accelerate AI
const ai = new AccelerateAI({
  connection,
  wallet,
  network: 'mainnet-beta'
});

Step 3: Run Your First Inference

// Use a pre-trained model
const result = await ai.inference({
  model: 'sentiment-analysis-v1',
  input: 'Solana is the fastest blockchain!',
});

console.log(result.prediction); // "positive"
console.log(result.confidence); // 0.96
console.log(result.txSignature); // On-chain proof

🎉 Congratulations! You've just executed your first AI inference on Solana!

Installation

Prerequisites

JavaScript/TypeScript

npm install @accelerate-ai/sdk

Python

pip install accelerate-ai-python

Rust (for on-chain programs)

cargo add accelerate-ai

⚠️ Note: For mainnet deployment, ensure you have sufficient SOL in your wallet to cover transaction fees.

Deploy Your First Model

Learn how to deploy a custom machine learning model on Solana.

Model Requirements

Deployment Steps

import { AccelerateAI } from '@accelerate-ai/sdk';

// Load your model
const model = await ai.loadModel('./my-model.onnx');

// Deploy to Solana
const deployment = await ai.deploy({
  model: model,
  name: 'price-predictor-v1',
  description: 'Predicts SOL price movements',
  inputSchema: {
    type: 'array',
    shape: [5], // 5 input features
  },
  pricing: {
    inferenceFeeLamports: 1000, // 0.000001 SOL per inference
  }
});

console.log('Model deployed at:', deployment.programId);
console.log('Model URL:', deployment.explorerUrl);

Architecture Overview

Understanding how Accelerate AI integrates with Solana.

Application Layer

Your dApp, Smart Contracts, Web Apps

Accelerate AI SDK

TypeScript/Python/Rust SDKs

AI Runtime Layer

On-chain inference engine, Model registry

Solana Blockchain

Proof-of-History, Sealevel Runtime

Key Components

AI Smart Contracts

Build intelligent smart contracts that use AI for decision-making.

Example: AI-Powered Trading Bot

use accelerate_ai::prelude::*;
use anchor_lang::prelude::*;

#[program]
mod ai_trader {
    pub fn execute_trade(ctx: Context<ExecuteTrade>) -> Result<()> {
        // Get market data
        let market_data = fetch_market_data(&ctx.accounts.market)?;
        
        // Run AI prediction
        let prediction = accelerate_ai::inference(
            "price-predictor-v1",
            market_data
        )?;
        
        // Execute trade based on AI decision
        if prediction.confidence > 0.8 {
            if prediction.label == "bullish" {
                execute_buy_order(&ctx, prediction.amount)?;
            } else {
                execute_sell_order(&ctx, prediction.amount)?;
            }
        }
        
        Ok(())
    }
}

SDK Reference

Core Methods

ai.inference(options)

Execute an inference on a deployed model.

Parameters:

  • model (string): Model name or program ID
  • input (any): Input data for the model
  • options (object): Additional options

Returns:

{
  prediction: any,        // Model output
  confidence: number,     // Confidence score (0-1)
  txSignature: string,    // Transaction signature
  computeUnits: number    // Compute units used
}

ai.deploy(options)

Deploy a model to Solana.

Parameters:

  • model (Buffer): Serialized model
  • name (string): Model name
  • pricing (object): Fee configuration

ai.train(options)

Start a decentralized training job.

Parameters:

  • dataset (string): Dataset ID or IPFS hash
  • architecture (string): Model architecture
  • epochs (number): Training epochs
  • validators (number): Number of validators

Optimization Guide

Optimize your models for on-chain execution.

Model Size Optimization

Compute Budget Tips

💡 Solana has a 1.4M compute unit limit per transaction. Optimize your models to stay within this budget.

// Check compute usage before deployment
const analysis = await ai.analyzeModel('./model.onnx');
console.log('Estimated compute units:', analysis.computeUnits);

if (analysis.computeUnits > 1_400_000) {
  console.log('⚠️ Model too large, consider optimization');
}

Security Best Practices

⚠️ Important Security Considerations

  • Always validate model inputs to prevent adversarial attacks
  • Use multi-signature wallets for model deployment in production
  • Implement rate limiting to prevent inference spam
  • Audit your models for bias and fairness before deployment

Input Validation

// Always validate inputs
function validateInput(input: number[]): boolean {
  // Check array length
  if (input.length !== 5) return false;
  
  // Check for valid ranges
  return input.every(x => x >= 0 && x <= 1 && !isNaN(x));
}

const userInput = [0.1, 0.5, 0.3, 0.8, 0.2];
if (!validateInput(userInput)) {
  throw new Error('Invalid input data');
}

const result = await ai.inference({
  model: 'my-model',
  input: userInput
});